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Abstract 

A common approach to evaluating the quality of urban environments in terms of 

walkability is to measure the accessibility of walking attractors. However, this approach 

is of little use when trying to evaluate the quality of future environments during the 

planning process simply because the necessary data is not available at this stage. By 

addressing this deficiency, our goal with this paper is to predict the long-term impact of 

planning decisions about the street network configuration on the accessibility of walking 

attractors (AWA).  

The theoretical model presented in this paper is based on the hypothesis that street 

network configuration influences how people move through space, and this in turn affects 

the allocation and accessibility of walking attractors. We empirically test this hypothesis 

in a case study of Weimar, Germany and found that street network configuration alone 

was significant and the strongest predictor of AWA. We show how street network 

influences the distribution of people in terms of movement flows and that the access to 

these movement flows is highly correlated to the neighborhood walkability. This 

highlights the importance of urban structure as an interface for social interaction and 

suggests the positive effect of social proximity on the quality of environment. 
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Introduction 

Why do we move from one place to another, and how do we decide where to go, settle 

down and spend our lives? The process of leaving one location in favour of another, more 

suitable for living, is determined by our ability to evaluate the quality of an environment. 

The critical decision about where to live can be expressed and measured in terms of 

opportunities offered by the environment. In doing so, we consider the attractiveness of 

opportunities and the effort necessary to access them (Tobler 1970). The key term 

expressing this intuitive and widely established concept in the field of geography is 

accessibility, which combines both the attractiveness and the proximity of the 

opportunities (Batty 2009).  

Based on this concept, many variations of accessibility-based measures of environmental 

quality have been developed, differing mostly in the definition of the opportunity which 

is being accessed. Depending on the social, economic or cultural context, it might be 

access to drinking water (Yang et al. 2013), to healthcare (Luo & Wang 2003) or jobs 

(Hu 2013). One specific group of accessibility measures based on quantifying the access 

to walkability attractors (AWA) has gained increasing attention in recent years. Due to 

several online tools providing the assessment of AWA (e.g. Walk Score, Walkshed) it 

became arguably one of the mostly widely applied environmental quality assessment 

methods accounting for more than 20 million evaluations per day (walkscore.com). In 

general, the AWA assessment is based on a) defining walking attractors1 b) geo-locating 

the walking attractors and c) measuring the distance to walking attractors. The advantage 

of this method is that after walking attractors have been defined, the rest of the procedure 

can be automated2 and easily calculated for a great number of locations. The relevance of 

AWA has been empirically tested and supported by a growing number of studies showing 

its relation to physical activity, walking behaviour and health indicators (Hirsch et al. 

2013; Brown et al. 2013; Duncan et al. 2016; Chiu et al. 2015). 

Moreover, AWA has proved to be a good proxy of qualitative indicators of walkability 

(aesthetics, presence of sidewalks etc.), which is especially important since these, in 

contrast to AWA, are not available in standardised electronic form and have to be 

collected manually at high cost (Koschinsky et al. 2016). Another key point supporting 

these findings and the general validity of AWA as a measure of environmental quality is 

the fact that it has been associated with its economic expression – the real estate value 

(Pivo and Fisher 2011). As shown by Pivo and Fisher (2011), the value of 10 Walk Score 

                                                 
1 Walking attractors are considered on the level of an individual or are aggregated on a group of 

people/population  
2 Locations of specific functions and land uses could be automatically acquired from open geo databases 

such as Google Maps, Education.com, Open Street Map, the US Census and Localeze 



 

 

points was associated with up to a 9% increase in the property value, depending on the 

property type. 

Despite the obvious benefits of AWA for evaluating existing environments, it is of little 

use in planning processes where decisions with long term impact are made. We argue that 

in the context of the current global urbanisation rate – with more than half the world’s 

population living in cities, a proportion that is expected to rise to two-thirds by 2050 (UN 

2014) – the evaluation of future environments becomes of primary concern. However, 

when trying to evaluate the environmental quality of a new district or city during the 

planning stage, the application of AWA fails simply because the allocations of most of 

the walking attractors are not known at this stage. Additionally, even if these were 

explicitly planned, they are prone to the internal dynamics of urban systems and tend to 

adapt to the long-term potentials given by the urban form (Al Sayed & Penn 2016; 

Banister et al. 1998; Hillier et al. 1993; Penn et al. 1998). In other words, the influence of 

planning on the allocation of specific functions by creating incentives and morphological 

potentials is rather indirect and therefore hardly foreseeable. As a result, the evaluation 

of walkability is currently only the subject of post-hoc measurement and is limited to 

describing the quality of the existing environments. 

Research question, hypothesis and limitations 

In order to actively plan for future walkable environments, the question addressed by this 

research is about the  of long-term planning decisions on the distribution and accessibility 

of walking attractors. We specifically focus on measuring the relationship between the 

street network configuration on AWA. We consider this as particularly important since 

not only the streets themselves are “long-lasting constituent elements of urban form” 

(Marshall 2006), but also their configurational properties remain stable over the time – in 

other words, the central streets with high connectivity remain central and well connected 

throughout the process of urban evolution (e.g. expansion, densification) (Strano et al. 

2012; Barrington-Leigh & Millard-Ball 2015). Therefore, the ability to predict the long-

term effect of street network configuration on AWA is a crucial precondition of planning 

processes oriented towards walkable neighbourhoods. 

The predictive model of AWA introduced and empirically tested in this paper is based on 

the research hypothesis that a) street network configuration influences how people move 

through space and b) that these movement flows affect the allocation and accessibility of 

walking attractors. 

It must be noted that in this research we limit our method to prediction of aggregated 

AWA. As previously mentioned, this is based on defining the walking attractors 

aggregated to the population as opposed to considering the individual preferences. We 

consider the aggregated approach more applicable for the planning of new environments 

as the individual needs and preferences of the future inhabitants are not known at this 



 

 

stage. This could be considered as limitation of our approach since the socio-demographic 

characteristics of individual households influences the relationship between AWA and 

the actual observed travel behaviour (Manaugh & El‐Geneidy 2011). However, we argue 

that the aggregated approach can still meaningfully inform planning, since the individual 

characteristics affects the strength of the AWA’s impact on walking behaviour, but its 

direction remains the same. In other words, neighbourhoods with higher AWA will 

increase the walking behaviour of its inhabitants, but the magnitude of the increase might 

depend on their socio-demographic characteristics. 

Aggregated Social Accessibility Method 

In accordance with our research hypothesis, we present a two-step method for predicting 

the AWA based on the street network configuration. First, we adopt an established graph 

centrality measure Betweenness to estimate the human movement flows based on the 

configurational properties of the street network. The novelty of the presented method is 

that in second step, we measure the accessibility of the predicted movement flows. Since 

the movement and the accessibility to people is central to our method, we termed it 

Aggregated3 Social Accessibility (ASA). As show in Figure 1, we assume that the 

distribution of movement flows is related to the distribution of walking attractors. 

Consequently, we expect the accessibility to movement flows (ASA) to be closely related 

to accessibility to walking attractors (AWA).  

                                                 
3 The aggregation illustrates that the accessibility is not measured between specific individuals but as an 

aggregation to the whole population represented in terms of “movement flows” 



 

 

 

Figure 1.  Conceptual scheme illustrating the research question and method 

 

We limit our model to the distribution of pedestrian flows as, compared to other means 

of transport, these have unique qualities, namely the ability to interact with their 

immediate surroundings (Gehl 1987). This is of special importance since the relationship 

between the distribution of people and walking attractors can be established only if the 

attractors and people can interact and therefore benefit from each other.  



 

 

Part 1: Street network centrality as a predictor of pedestrian flow 

Methods for modeling pedestrian flow depend highly on the data available as model input.  

In general, the aggregation and the level of detail of the model are closely related, 

meaning that detailed prediction on the level of the individual requires detailed data about 

the individuals and their environment (Voorde 2011). The model developed in this 

research aims to reveal the long-term impact of early planning stages and therefore limits 

the input data to street network. 

For this reason, the Space Syntax method is adopted as an established approach to 

assessing the impact of spatial configurations on different behavioural phenomena, such 

as the allocation of functions or movement flows (Hillier et al. 1993). As argued by Space 

Syntax scholars, this analytical framework is able to explain 60% to 80% of variance in 

movement rates as an effect solely of the street network, ignoring all other environmental 

variables (Penn 2003). While the simplicity and the explanatory power of Space Syntax 

has been identified as a major advantage of the method, several implicit assumptions 

about the environment must hold true for its predictive power to be valid: It is assumed 

that movement attractors are either evenly distributed throughout the network or follow 

the pattern of movement network configuration as a multiplier of its natural potential 

(Hillier 1999, p. 176; Hillier et al. 1993, p. 31). These assumptions might be perfectly 

reasonable in emergent, unregulated urban systems if the network configuration and land 

use have the necessary freedom and time to harmonise. However, evidence shows that 

even in the cases of planned cities, the density and land use patterns tend to adapt to the 

potentials given by the street network configuration (Al Sayed & Penn 2016). 

The Space Syntax approach to analysing urban systems is based on the idea of visual axes 

as movement trajectories and their relationships represented as the dual of a spatial graph 

(Hillier & Hanson 1984). This representation makes it possible to apply graph-theoretical 

measures to evaluate and quantify the relationships of each spatial element to the whole 

system. From the vast opportunities offered by Space Syntax’ analytical framework, one 

specific model introduced by Turner (2001) as an “angular segment map” seems to be a 

particularly strong predictor of pedestrian movement in the urban context (Hillier & Iida 

2005; Turner & Dalton 2005; Varoudis et al. 2014). This spatial graph consists of vertices 

as visual axes divided at their intersections (segments) and their connections as edges 

weighted by the angular deviation between the adjacent segments (see Figure 2). The 

segment map can also be seen as a special case of a street network graph4 with 

intersections modelled in a way that can be used to approximate human movement by 

                                                 
4 The movement network considered in Space Syntax analysis is an extension of the street network. All 

accessible public space is connected through movement network including special multi-level connections 

such as tunnels, skywalk etc. 

 



 

 

minimising angular turns along a path. Consequently, the unit of distance between a pair 

of nodes is expressed as an angular deviation as opposed to the traditional temporal, 

metric or topography5 based approaches rooted in geography. As a matter of fact, 

topological or angular distance as a specific feature of the Space Syntax model, has been 

repeatedly confirmed to be a better predictor of pedestrian and vehicular movement 

compared to its metric counterpart (Hillier & Iida 2005; Lerman et al. 2014). 

 

Figure 2.  Various spatial network representations (a) Street center line (b) Axial map (c) Segment 

map 

The prediction is based on the importance of individual segments in terms of their 

network centrality. A specific type of centrality used to estimate the impact of a street 

network’s configuration on movement was introduced by Freeman (1977) under the term 

Betweenness as a measure of the information flow in social networks. Later, it was 

adopted by geographers and Space Syntax scholars as a measure of traffic flow in spatial 

networks. The Betweenness centrality of node i in a street network is defined as the sum 

of all possible shortest paths that traverse through i. Formally, Betweenness of a node is 

expressed as: 

(1) 

𝐵𝑒𝑡𝑤𝑒𝑒𝑛𝑛𝑒𝑠𝑠[𝑖]𝑟 = ∑
𝑛𝑗𝑘[𝑖]

𝑛𝑗𝑘

𝑁

𝑗,𝑘 ∈𝐺−{𝑖},𝑑[𝑗,𝑘]≤𝑟

 

 

where N is the number of nodes in the system, njk is the number of shortest paths between 

nodes j and k, and njk[i] is the number of these shortest paths that pass through the node i. 

                                                 
5 The movement network is considered as a two-dimensional projection with no information about the slope 

of a street segment. This may reduce the predictive power of the model in urban structures with high 

variation in elevation. 



 

 

The definition of travel radius r is crucial, since it reflects the maximum travel distance 

and therefore the different travel modes. “Within transportation planning, a quarter-mile 

(400 m) is often used as a rule of thumb for the walkable catchment area of an 

opportunity” (Vale & Pereira 2016), however various studies suggest a high variance in 

maximal walkable distance and a clear need for empirical calibration of this parameter as 

discussed in the following section. 

Part 2: Accessibility to pedestrian flow as predictor of AWA 

Conceptually, the ASA approach follows the logic of the AWA with the main difference 

that instead of walking attractors, the accessibility of people is being considered. In order 

to measure access to people, their distribution represented as pedestrian movement flows 

has been estimated based on a street network’s Betweenness centrality.  

The concept of accessibility “is often seen as a measure of the cost of getting from one 

place to another, traded off against the benefits received once the place is reached” 

(Batty 2009). Formally, it has been denoted by Hansen (1954) as a gravity function 

proportional to the attractiveness of all locations j surrounding i and inversely 

proportional to travel cost between i and j (Equation 2).  

(2) 

𝐺𝑟𝑎𝑣𝑖𝑡𝑦[𝑖]𝑟 =  ∑
𝑊[𝑗]

𝑒𝛽.𝑑[𝑖,𝑗]

𝑗∈𝐺−{𝑖},𝑑[𝑖,𝑗]≤𝑟

 

 

Of fundamental importance in the Gravity function is the definition of travel cost – the 

impedance function, as it can take many forms, defining the inconvenience to travel 

based on the travel distance between origin and destination (Vale & Pereira 2016). The 

method used most often, closely tied with travel behaviour theory, is the negative 

exponential form of the impedance function (Handy & Niemeier 1997). The ASA method 

adopts this function with the distance-decay parameter β set to 0.002176 as empirically 

calibrated by Handy & Niemeier (1997). 

In the adopted gravity function as a measure of accessibility, the weight W of a 

destination j is based on the movement flow potential of the street network given by the 

angular shortest path Betweenness centrality calculated in the first step. The movement 

potential of an individual street segment is discretised and mapped to points representing 

destination vertices of a spatial graph used for the calculation (Figure 3). The point 

distance was set to 5m, representing a good trade-off between computation time and 

                                                 
6 A distance decay parameter β of 0.00217 in metres correspond to 0.1813 in temporal units as defined by 

Handy & Niemeier (1997) 



 

 

precision. Based on experimental results showing no significant deviation in the ASA 

index, this discretisation setting is considered a good approximation of a continual 

distribution. 

 

Figure 3. Discretisation of spatial network (a) Segment map (b) Betweenness R600 (red = high 

Betweenness, green = low Betweenness) (c) Discretised spatial network to evenly distributed 

points (5m distance)  

Results – Case study Weimar 

In the following section, we present an empirical study that aims to test the research 

hypothesis and measure the ability of the ASA method to predict the AWA based on the 

street network configuration. First, we test the hypothesis that the street network 

configuration affects the pedestrian movement flows and could be effectively used to 

estimate them. For this purpose, we collect empirical data on pedestrian movement and 

fit a linear regression model7 in order to quantify the relationship between the 

configuration and movement. Second, we test the hypothesis about the influence of 

pedestrian movement flows on the AWA. We assume that the distribution of pedestrians 

correlates with distribution of walking attractors. Therefore, the accessibility of 

pedestrians is expected to correlate with the accessibility of walking attractors. We test 

the second hypothesis by measuring the relationship between the estimated accessibility 

of pedestrians (ASA) and the empirical measure of AWA assessed via publicly accessible 

                                                 
7 Previous studies on the relationship between pedestrian flow and street network centrality suggest a linear 

relationship between the variables (Hillier, et al. 1993; Penn 1997; Turner & Dalton 2005) 



 

 

online service known under the term Walk Score. At the same time, the strength of the 

relationship between ASA and AWA will quantify the ability of the proposed model to 

predict the accessibility of walking attractors based on the street network configuration. 

We test the hypothesis in a pilot case study conducted in the city of Weimar, Germany. 

For the purpose of evaluating the influence of the street network configuration on 

pedestrian movement, Weimar offers a rich data sample consisting of a wide range of 

street network patterns, from organically evolved medieval city centre, to regular grids of 

19th century city expansion areas and large slab-housing estates built in the 1970s 

(Figure 4). Furthermore, the size of the city (64,131 inhabitants, 84,420 km2) makes it 

possible to cover and analyse the city as whole, which eliminates the ‘edge effect’ that 

can bias the partial analysis of larger urban systems (Gil 2015)8. Its compactness also 

promotes walking as a main travel mode, which complies with the focus and methods 

chosen in the ASA. Additionally, Weimar also exhibits high variance in the AWA 

measured by Walk Score, ranging from 10 to 100 points, i.e. “car-dependent” to “walker’s 

paradise”.  

 

Figure 4. Street network patterns and building densities found in Weimar. (a) Historical center 

(b) Regular grid (c) Large housing estates 

The Walk Score index is a web-based service calculating the AWA and thus the 

walkability of an environment. It is measured by on a scale of 0 to 100 points, where the 

                                                 
8 In the analysis of spatial networks, the ‘edge effect’ describes a bias in the analysis results as a product 

of portion of the network included in the analysis – the edge (Okabe & Sugihara 2012). Different 

measures have different degrees of sensitivity towards the ‘edge effect’, mostly depending on the radius 

of the analysis (Gil 2015). In the case study presented in this paper, we avoid the ‘edge effect’ by 

analyzing the whole city of Weimar. Since no additional settlements were found within the boundary of 

the maximum analysis radius (2000m) from the edge of the city, there would be no change in analysis 

results if the edge were extended. 

 



 

 

contribution of walking attractor to the overall score depends on its type9 and network 

distance from the evaluated address. A distance decay function is used to award attractors 

within a 0.25 mile radius maximum points and ones at a distance of more than 1 mile (30-

minute walk) with no points (Oishi et al. 2015). The major advantage of Walk Score is 

its availability, since all the data required for the calculation has been already collected 

and is freely accessible from third party services such as Google Maps, Education.com, 

Open Street Map, the US Census and Localeze (Duncan et al. 2012). This makes it 

possible to automatically assess the Walk Score index for any location resulting in a data 

sample about environmental quality which is unprecedented both in size and level of 

detail10.  

Data collection 

In order to test the street network configuration as a predictor of pedestrian movement, 

we conducted an empirical study counting the pedestrian flow. From 14-20 March 2016, 

we collected data from 120 locations spread all over the city covering low to highly 

frequented locations. For each location, we repeated the exercise on three different days 

(one weekend and two working days) and three times each day (8-10am, 12-2pm, 4-6pm). 

Consequently, we gained nine measurements for each location, which make it possible to 

eliminate outliers and temporal fluctuations in pedestrian flow. To examine how the 

distribution of movement varies among the nine measurements, we calculated the Pearson 

correlation matrix for all their combinations = 36 correlations (Table 1). The average 

Pearson correlation coefficient of 0.802 suggests that the movement flow remains 

relatively stable. As a result, we calculated the mean of the nine measurements for all 120 

locations as the best representative of pedestrian movement. 

                                                 
9 Walk Score recognises eight types of walking attractors: Errands, Culture, Grocery, Park, Dining and 

Drinking, School, Shopping (walkscore.com). Their individual weighting was empirically calibrated 

based on their contribution to moderate and vigorous physical activity (Frank 2013). 
10 The resolution of Walk Score is on the level of the individual house. Walk Score can be assessed for 

any location worldwide, however location outside the US, Canada, Australia and New Zealand should be 

additionally validated, since the geo-located data is not always complete (walkscore.com). 



 

 

Table 1. Pearson’s correlation matrix showing the correlation coefficient R for nine pedestrian-

counting sessions. Significant correlations are marked with * (p value ≤ .05). 

  Weekend 

8-10am 

Weekend 

 12-2pm 

Weekend 

 4-6pm 

WD. 

8-10am 

WD. 

12-2pm 

WD. 

4-6pm 

WD2. 

8-10am 

WD2. 

12-2pm 

Weekend 12-2pm 0.728*               

Weekend 4-6pm 0.674* 0.956*             

Working Day 8-10am 0.689* 0.845* 0.88*           

Working Day 12-2pm 0.646* 0.873* 0.908* 0.864*         

Working Day 4-6pm 0.688* 0.887* 0.922* 0.903* 0.928*       

Working Day2 8-10am 0.659* 0.714* 0.726* 0.774* 0.67* 0.757*     

Working Day2 12-2pm 0.675* 0.839* 0.892* 0.85* 0.959* 0.911* 0.692*   

Working Day2 4-6pm 0.602* 0.746* 0.866* 0.835* 0.868* 0.861* 0.688* 0.911* 

Note: WD: Working Day, WD2: Working Day2 

 

The digital model of the movement network consisting of axial lines split at their 

intersections was manually drawn for the whole city of Weimar following the Space 

Syntax method described in previous section. The resulting model of 3272 line segments 

(referred to here as the street network or spatial network) was geo-localized in order to 

assess the respective Betweenness centrality, the ASA and Walk Score. All calculations 

described in the method section necessary to assess the ASA based on the data on street 

network were carried out in the DecodingSpaces spatial analysis toolbox for Grasshopper, 

Rhino11. The Walk Score data was automatically assessed via a web API offered by 

walkscore.com. The API received the latitude and longitude of the midpoint of all 3272 

line segments from the Weimar street network and returned the calculated WS. A subset 

of the WS data received via API (120 observations) was validated against manually 

assessing the WS using the standard web interface. We can summarise that no differences 

were detected. All statistical evaluations were conducted using the R statistical 

programming language12. 

                                                 
11 Whitepaper describing the functionality of the DecodingSpaces toolbox is available at: https://e-pub.uni-

weimar.de/opus4/frontdoor/index/index/docId/2738 
12 R Core Team (2013). R: A language and environment for statistical computing. R Foundation for 

Statistical Computing, Vienna, Austria.  URL http://www.R-project.org/. 



 

 

Street network configuration as predictor of pedestrian movement flows  

To quantify the relationship between Betweenness centrality as measure of movement 

potential and counted pedestrian movement, we assess the R-square as a measure of fit 

calculated in the linear regression model. To comply with the normal distribution criteria 

of linear regression, we logarithmically (LN) transform both variables to correct the 

original right skewed distribution. It should be noted that other models, such as Poisson 

regression, might be a better choice for predicting a time-sequence variable such as 

movement flow and would not require the transformation of the data. However, since our 

goal is measurement of the relationship, we argue that these models are less suitable for 

our purposes since they do not offer any equivalent to R-square.  

Additionally, due to the high sensitivity of Betweenness centrality results to the choice of 

analysis radius, we systematically investigated the relationship between radius definition 

(from 100 to 2000m) and the ability of Betweenness centrality to predict pedestrian 

movement (Figure 5). The highest R2 = 0.491 (p value ≤ 0.001) was found for a radius of 

600m (or a seven-minute walk). Furthermore, we observe that the radius is more sensitive 

in a lower distance range, peaking at 600m and then slowly falling towards a distance of 

2km with R2 = 0.058 (p value ≤ 0.05). 

 

 
Figure 5. Graph showing the relationship between the radius of Betweenness centrality (in 

100m steps) and its ability to predict pedestrian movement (in R²) 

By examining the residuals, we were able to identify several causes of deviation between 

movement potential and actual measured movement. These were mainly traced to the 

allocation of special functions and to buildings of historical or cultural importance which 

amplified movement but did not add movement potential to the network (i.e. touristic 



 

 

sights, such as the birthplace, residence and monuments of Goethe and Schiller; the train 

station, etc.) (Figure 6). Despite these deviations, we can nevertheless conclude that the 

calculated street network movement potential (Betweenness R600) in the case of Weimar 

provides a significant and strong estimate of the measured pedestrian movement. 

  
Figure 6. Residuals of linear regression model with Betweenness R600m as an independent 

variable and measure of pedestrian flow as the dependent variable for all 120 observations. The 

size of the circle is proportional to the value of residual (highest residual = biggest circle diameter) 

and its colour identify the direction of the deviation (Red = positive residuals, Blue = negative 

residuals) 

Pedestrian movement flow as a predictor of the access to walking attractors  

Once the inner consistency of the ASA method was successfully tested (first hypothesis), 

we evaluated the second research hypothesis stating that the access to walking attractors 

and access to people are strongly related. The access to people is calculated by discretising 

the continuous movement flows into single points (see method section) and evaluating 

the contribution of each point to the overall accessibility. This contribution is proportional 

to the intensity of movement flow at a given location and inversely proportional to its 

network distance. The ASA index is calculated for the midpoint of every street segment 



 

 

in Weimar (3272 segments) as a common spatial unit for all graph-based calculations in 

the presented method (Figure 7). 

 

Figure 7. ASA outcome mapped onto the street network (Red = High ASA, Blue = Low ASA). 

The hypothesis is evaluated by measuring the measure of fit between calculated ASA as 

a predictor and AWA empirically measured by Walk Score index as the outcome variable 

in a linear regression model. Special attention must be paid to the conceptual difference 

of the allowed range adopted by ASA and Walk Score, which has consequences for the 



 

 

order of the regression model and shape of the fitting curve13. The ASA is defined as a 

range from 0 to infinity whereas Walk Score starts at 0 but has a cut-off value of 100. As 

consequence, we observe a curvilinear relationship with accelerating radius as Walk 

Score approaches the 100-point cut-off and ASA continues to rise (Figure 8). The ASA, 

as a measure of access to people, was a significant predictor of the Walk Score 

(β1 = 6.881e-03, β2 = 7.542e-08, β3 = -9.624e-12), accounting for 84.12% of the variance 

(R2 = 0.841, p ≤ 0.001). Based on this strong, significant relationship, and the model 

evaluation in terms of the residual analysis (see Appendix 1) we conclude that the case 

study of Weimar confirms the validity of our hypothesis. 

 

Figure 8. A scatter plot showing the relationship between ASA as a predictor and Walk Score as 

the outcome variable with fitted regression line. 

Discussion 

The hypothesis testing confirmed the significant effect of street network configuration on 

pedestrian movement as suggested by previous studies. In the case of Weimar, the angular 

Betweenness centrality accounts for 49% of variance in the empirically-measured 

pedestrian flow with the maximum prediction power achieved at a radius of 600 m. 

Furthermore, we observed that variations of building density or allocation of special 

functions that don’t follow the movement potential of the street network might be 

                                                 
13 We modeled the curvilinear relationship between ASA and AWA by fitting the polynomial regression 

function. The best fit maintaining all regression parameters significant was achieved by 3rd degree 

polynomial function. 



 

 

responsible for distortions in the relationship between estimated and measured 

movement. In our case, these effects were present, but played a minor role as already 

confirmed by previous studies (Bielik et al. 2015). However, in general, these limitations 

might restrict the applicability of the presented method. As a consequence, we see a clear 

need for further examination of the relationship between building density, allocation of 

movement attractors and network centrality in order to (a) identify cases where 

Betweenness centrality has limited ability to predict movement, and (b) to extend the 

current model in order to deal with these cases. Despite these limitations, we argue that 

the angular Betweenness centrality is especially helpful in the planning process. Even 

though the assumptions of the model might not always match reality, it can still can be 

applied as a neutral benchmark in order to deliberately foster or weaken the movement 

potential of a street network by varying building density and land use allocation. Based 

on the empirical results and our objective of using the ASA method in the planning 

process, we consider the angular Betweenness centrality a good estimate of pedestrian 

movement flows. 

Regarding the second hypothesis, we found that ASA measuring the access to pedestrian 

movement flows based on street network configuration is a significant predictor of AWA. 

In our case study, the ASA alone accounts for 84% of variance in AWA measured by the 

Walk Score index. This result offers strong support for the research hypothesis, stating 

that access to people is related to access to walking attractors. The remaining 16% of 

variance in Walk Score which were not captured by the ASA might be attributed to (a) 

the limited ability of the method to estimate pedestrian movement as discussed earlier, 

and (b) the definition and weighting of the Walk Score function since it was calibrated 

for a North American context. With regard to the first point, we argue that a better 

predictor of pedestrian flow would improve the overall performance of ASA, but that 

even a coarse pedestrian flow estimate can produce a relatively precise measure of access 

to pedestrian flows. This seemingly counter-intuitive observation is mainly a product of 

the smoothing effect of the adopted gravity function, which reduces the impact of local 

deviations in estimated pedestrian flow (see Appendix 2). We assume that this holds true 

if deviations in movement flow prediction are randomly distributed throughout the spatial 

network, although this has to be further investigated in future studies. Regarding the 

second point – the Walk Score methodology – the empirical data clearly shows that the 

Walk Score threshold value for the maximum score might be too low for denser, 

historically-evolved European cities. Additionally, the 1.6 km radius adopted by Walk 

Score may not reflect the maximum walking distance for different cities as suggested in 

previous research and confirmed in this study (in Weimar a radius of 600 m was found to 

be the best predictor of pedestrian flow). 

Nevertheless, if our results are confirmed by future studies, the consequences will be 

much more substantial than the ability to predict AWA during the planning process. Since 



 

 

ASA doesn’t consider any other information aside from the street network, the 

preliminary results suggest that its configuration alone is the most influential variable for 

defining access to people and walking attractors. Furthermore, the strong relationship 

between ASA and AWA shows that access to people is an important predictor of 

environmental quality.  

Conclusions 

The main goal of this study was to inform the planning process by predicting the influence 

of street network configuration on the walkability of an environment based on access to 

walking attractors. To this end, we developed and empirically tested a predictive method 

we have called Aggregated Social Accessibility (ASA). 

We found that the configuration of a street network is a significant predictor of the 

pedestrian movement flows. Furthermore, we confirmed the research hypothesis by 

identifying evidence for a relationship between access to pedestrian movement flows and 

access to walking attractors. The ASA method presented here was found to be a strong 

predictor of Walk Score – an established measure of AWA. As a consequence, we present 

empirical evidence showing that the spatial network, access to people and the walkability 

of environment are closely related. 

In order to generalise current results and determine causality in the presented findings, 

further case studies are necessary and currently in preparation. 
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Appendix 1 

ASA as Predictor of AWA (Walk Score) – Residual Analysis 

To validate the predictive linear regression model of Walk Score based on the ASA we 

conduct the regression residual analysis. First we examine the residual variance (Figure 

9a). We found uniform distribution of residual variance with decrease at maximum Walk 

Score values. This could be accounted for the fact that Walk Score index as opposed to 

the ASA has introduced artificial cut-off value at 100 points. As next we test the normality 

of error terms (Figure 9b) and observe that the residuals follow the normal distribution. 

Finally, the leverage plot (Figure 9c) doesn’t indicate any potential measurement errors 

and their influence on the regression model. We conclude that the residual analysis didn’t 

reveal any systematic patterns indicating errors in the predictive model. 

 

Figure 9. Residual plots: (a) Residuals vs. Fitted values, (b) QQ plot and (c) Residuals vs. 

Leverage 

Appendix 2 

Pedestrian Movement Flows vs. Access to Pedestrian Movement Flows 

The relation between predicted movement flows and the access to these movement flows 

show the high collinearity of both measures (Pearson’s correlation coefficient R = .67, p 

value ≤ .001, see figure 10b). However, we observe discrepancy at locations with a rapid 

drop of movement between neighboring street segments. While this high deviation in 

movement flows among geographically close locations is a common phenomenon in 

street networks, physical access to an opportunity doesn’t change abruptly every few 

steps (Figure 10a). With this in mind, we can consider the ASA as smoothing function of 

movement potential.  



 

 

 

(a)           (b) 

Figure 10. (a) Movement potential (Betweenness centrality R600m) mapped onto the street 

network (Black = High Betweenness, Light grey = Low Betweenness) and access to movement 

potential (ASA) mapped onto buildings (Red = High ASA, Blue = Low ASA). (b) A scatter plot 

showing the relationship between ASA and betweenness centrality R600m 


